درجه بندی زعفران بر اساس ویژگی های ظاهری با استفاده از شبکه های عصبی مصنوعی
نویسندگان
چکیده مقاله:
زعفران بهعنوان یک کالای تجاری مهم در کشور بهشمار میآید و توجه به مکانیزه کردن آن از مرحله تولید تا بستهبندی اهمیت زیادی دارد. در بدو ورود زعفران به فرایند کیفی سنجی در آزمایشگاه ، ارزیابی اولیه بر اساس مشخصات ظاهری زعفران توسط شخص خبره انجام میشود. لیکن بروز خطای انسانی در تشخیص کیفیت زعفران بر مبنای ویژگیهای ظاهری آن امری اجتنابناپذیر است؛ استفاده از تکنیکهای مبتنی بر هوش مصنوعی میتواند ضمن مکانیزه کردن سیستم، در کاهش خطاهای انسانی نیز تأثیرگذار باشد. این مطالعه از نوع تشخیصی بوده و پایگاه داده آن مشتمل بر 113 نمونه زعفران با 7 ویژگی میباشد که توسط محققین این پژوهش، در مهرماه 1396 از آزمایشگاه معتبر زعفران و تحت نظارت شخص خبره جمعآوری شده است. کیفی سنجی نمونهها به کمک ویژگیها در 4 کلاس مختلف زعفران پوشال درجهیک (نگین)، پوشال درجه دو (خوب)، پوشال درجه سه (معمولی) و پوشال درجه چهار (معمولی درجهدو) انجام شده است. بهمنظور درجهبندی زعفران، از روشهای مبتنی بر شبکههای عصبی مصنوعی استفادهشده است. پس از تحلیل و مقایسه مدلهای تولیدشده با استفاده از دو نوع شبکه عصبی پرسپترون چندلایه و شبکه عصبی بردار یادگیر، بالاترین دقت کلاسبندی روی نمونههای آموزش و آزمون به ترتیب با 75/93 و 75/75 درصد حاصل شد. دقت بهدستآمده نشاندهنده آن است که مدل شبکه عصبی پرسپترون چندلایه میتواند بهعنوان یک تصمیم گیر در کنار شخص خبره و یا بهصورت مستقل در مراکز آزمایشگاهی زعفران مورد استفاده قرار گیرد.
منابع مشابه
درجه بندی خرمای رقم زاهدی بر اساس ویژگی های ظاهری با استفاده از روش های پردازش تصویر و یادگیری ماشین
خرما، یکی از محصولات باغی واستراتژیک در منطقه و ایران است. متاسفانه درآمد حاصل از صادرات این محصول پرارزش، نسبت به حجم صادرات بالای آن مطلوب نیست، بخشی از این امر به کیفیت پایین آمادهسازی و بستهبندی محصول مربوط میشود. به نظر میرسد استفاده از فناوریهای نوین، مانند بینایی ماشین و پردازش تصویر، میتواند روند درجهبندی و جداسازی خرما را بهبود بخشد. در این پژوهش درجهبندی میوه خرمای رقم زاهدی،...
متن کاملافزایش نرخ کارایی طبقه بندی با استفاده از تجمیع ویژگی های موثر روش های مختلف ترکیب شبکه های عصبی
Both theoretical and experimental studies have shown that combining accurate Neural Networks (NN) in the ensemble with negative error correlation greatly improves their generalization abilities. Negative Correlation Learning (NCL) and Mixture of Experts (ME), two popular combining methods, each employ different special error functions for the simultaneous training of NN experts to produce negat...
متن کاملتشخیص عیب یاتاقان های غلتشی با استفاده از سیگنال های ارتعاشی بر اساس تحلیل طیف تکین و شبکه عصبی مصنوعی
در کاربردهای صنعتی، پایش وضعیت و عیبیابی بیرینگها از اهمیت زیادی برخوردار است. تحلیل ارتعاشی، انتشار صدا، دمانگاری و تحلیل روانکار از جمله روشهای تشخیصی جهت شناسایی عیوب بیرینگها میباشند. یکی از قابل اطمینانترین روشها جهت عیبیابی تجهیزات دوار، مطالعه بر روی سیگنال ارتعاشی میباشد. تاکنون روشهای مختلفی جهت عیبیابی بیرینگهای غلتشی توسط سیگنالهای ارتعاشی در حوزه زمان ارائه شده است. بیش...
متن کاملبرآورد تغییرات سطح پوشش جنگل های رودسر با استفاده از روش های طبقه بندی شبکه عصبی مصنوعی و حداکثر احتمال
امروزه کسب آگاهی و دانش در رابطه با پوشش گیاهی نقش مهمی را در مدیریت خاکها ایفا میکند. بااین وجود برآورد پوشش گیاهی به روش معمولی که شامل برآورد کلی از پوشش گیاهی است هم زمانبر است و هم اطلاعات چندان دقیقی را به دست نمیدهد. از این رو سنجش از دور فنآوری بسیار مفیدی است که به دلیل کاهش زمان و هزینه، بر سایر روشها ارجحیت داده میشود. در این تحقیق سعی بر آن شد با استفاده از تکنیکهای سنجش از د...
متن کاملپیشبینی آماری پهنه بندی خطر زلزله احتمالی با استفاده شبکه های عصبی مصنوعی
پیشبینی محل وقوع زلزلههای آتی همراه با تعیین درصد احتمال رخداد، میتواند در کاهش خطرات ناشی از زلزله بسیار سودمند باشد. تعیین محلهای پیشبینی شده، سبب افزایش توجه به طراحی، بهسازی لرزهای و ارزیابی قابلیت اعتمادپذیری سازههای موجود در این مکانها میشود. در پیشبینی زمان وقوع زلزله فرضیهها و نظریههای گستردهای مطرح است. هنوز شیوهای دقیق برای پیشبینی زمان رخداد زلزلههای آتی مورد تأیید ق...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 7 شماره 4
صفحات 521- 535
تاریخ انتشار 2019-12-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023